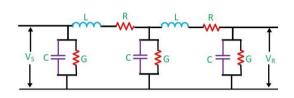

(short) Intro to Lumped Element Modelling

micro-470

2024

Mechanical Example

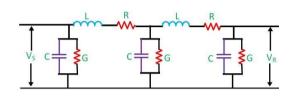
- What did we neglect?
- What did we gain ?
- Genius or stupid approach?



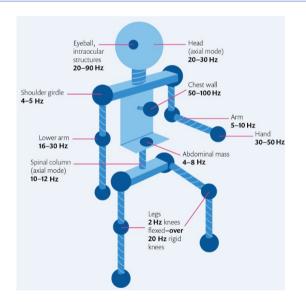
Lumped Element Model (LEM) allows simplifying systems

- A lumped element model (LEM) is a way to simplify a given system into a combination of discrete elements ("lumped")
 - The elements can exchange energy/information with other elements
 - Signals/Variables propagate instantaneously inside the elements
- This approach greatly reduces the complexity of the system
- In some cases, the model will give a good approximation (but can also give nonsense if physics poorly understood)

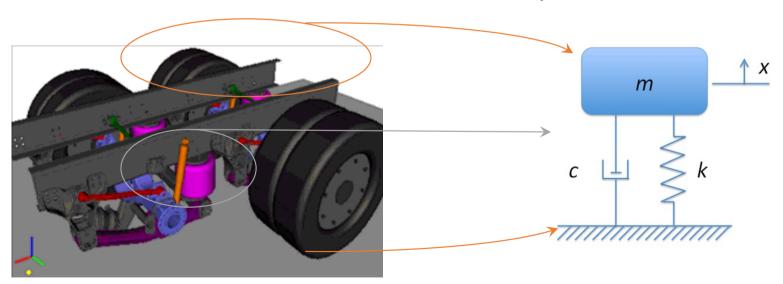
Lumped element = information travels instantaneously through device

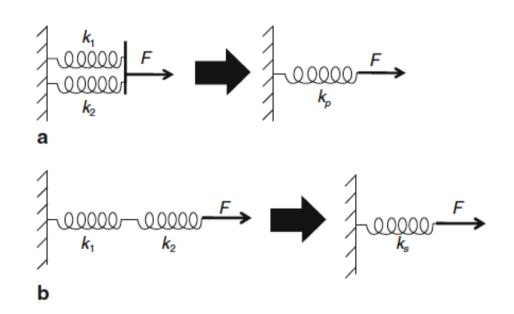


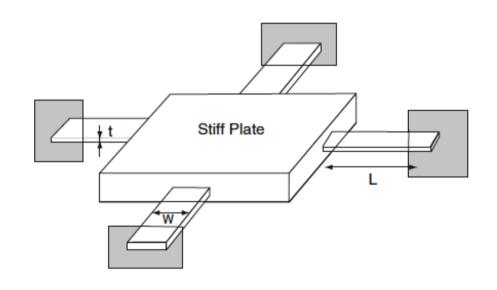
Lumped element = information travels instantaneously through device



https://www.youtube.com/watch?v=7Ht5m2iwDys

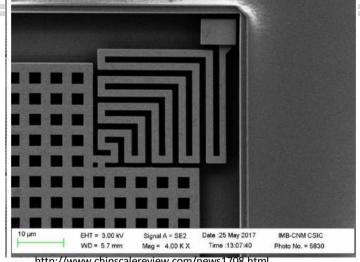


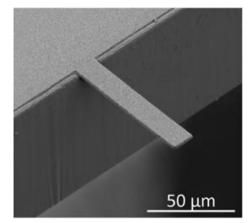

Mechanical Example


- Variables: position (x) and velocity (\dot{x}) of the mass
- Mass connected to ground via spring and damper
 - Approximations: Mass is rigid and concentrated; spring and damper are massless
- Eq of Motion: $m\ddot{x} + c\dot{x} + kx = F(t)$

Solve in Matlab, C++, or analytically
If make equivalent circuit, can use Circuit simulator

Complex springs can be modeled as combination of simple elements




Springs are more complex than F = kx...

Simple Cantilever has

- Many bending modes, torsion, etc.
- Anchor effects
- Material non-linearities
- Depends on how load is applied
- Yet in Lumped Element Modeling (LEM), we will represent a complex deformation as a simple spring!
- **LEM is powerful** as we includes key cantilever dimensions as parameters, allowing quick design of full system, with analytical or numerical solutions
- But a useful LEM requires some physical insight!

http://www.chipscalereview.com/news1708.htm

http://microchem.com/Appl-MEMs-Cantilevers.htm

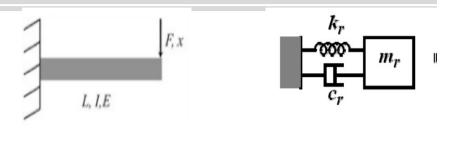
Several different k for a simple cantilever, depending on how it is deformed...

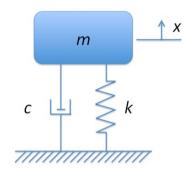
Table 4.1 The linear stiffness coefficient k of some of the common structure configurations in MEMS. The unit of k for all loading types is force/length. For wide beams (b > 5h) of cases 3–9, replace E with $E/(1 - v^2)$, where v is the Poisson's ratio. When calculating the natural frequency of a flexible structure alone, use an "effective" mass for the structure

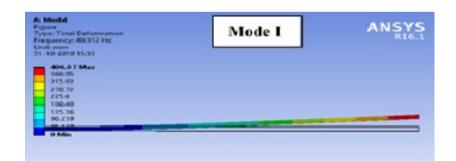
1) Axially loaded bar	$\bigcup_{E, A, L}$ $\bigcup_{F, x}$	$k = \frac{EA}{L}$ E: Modulus of elasticity A: Area of cross section L: Length of bar
2) Rod under torque	G, J_p, L T, θ	$k = \frac{GJ_p}{L}$ J_p : Polar moment of inertia of the cross section G : Shear modulus L : Length of rod
3) Cantilever beam under point load at the tip	E, x	$k = \frac{3EI}{L^3}$ E: Modulus of elasticity I: Moment of inertia of the cross section L: Length of bar
4) Cantilever beam under uniformly distributed pressure	P L, I,E	$k = \frac{8EI}{L^3}$ Youni

For one spring, many spring constants, depending on:

- how beam bends, and
- where force is applied.




Lumped-parameter modeling in mechanics


 the dynamics of mechanical structures can be reduced to a mass-spring model where the natural pulsation is given by

$$\omega_0 = \sqrt{k/m}$$

- k is given by calculation such as on previous slide
- But what mass to use? Seems obvious, but
- For each mode, we define an **effective mass**, m^* , that gives the appropriate natural frequency for a given structure of stiffness k.
- m* is smaller than m for modes where entire mass is not moving

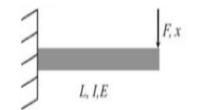
Effective mass for a cantilever (point load at tip)

exact analytical calculation of the natural freq. of a cantilever:

$$f_0 = \frac{1}{2\pi} \frac{h}{l^2} \sqrt{\frac{E}{\rho}}$$

 $\omega_0 = \sqrt{k/m}$

natural frequency in equivalent effective mass-spring model:


$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m^*}}$$

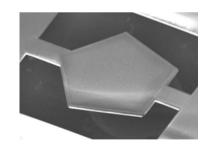
E: young's modulus ρ: density h: thickness

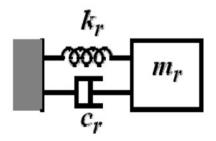
l: length w: width

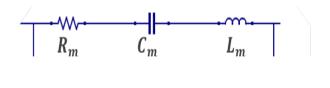
By taking the stiffness of the cantilever for end loading:

$$k = \frac{Ewh^3}{4l^3} \quad \propto L$$

Effective mass of 1st vibration mode of the cantilever :


$$m^* = \frac{1}{4} \rho \cdot w \cdot h \cdot l = m/4$$




Electrical equivalent circuit

 Very often, we will work in the electrical domain, as very easy to solve electrical circuits (using p-spice, QUCS, etc)

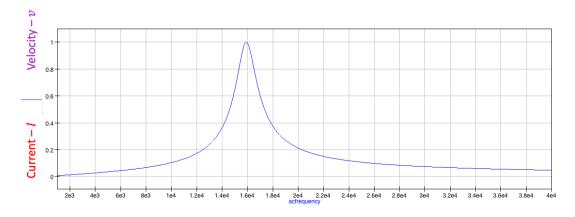
Mechanical Variable	Electrical Variable	
Damping, c	Resistance, R	
Stiffness ⁻¹ , <i>k</i> ⁻¹	Capacitance, C	
Mass, <i>m</i>	Inductance, L	
Force, f	Voltage, V	
Velocity, v	Current, <i>I</i>	

Equivalent circuit - Generalized variables

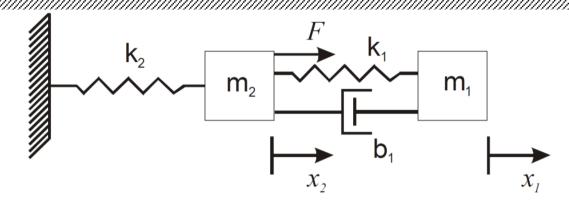
Generalized	Electrical case	Mechanical case	Fluidic case	Thermal case
Displacement – q	Charge – q	Displacement – x	Volume – V	Heat – Q
Flow – f	Current – I	Velocity – v	Flow rate – Q	Heat flow $-\dot{Q}$
Effort – e	Voltage – V	Force – F	Pressure – P	T difference – ΔT
Momentum – p	_	Momentum – p	Momentum – Γ	_
Resistance – R	Resistor – R	Damper – c	Fluid resist. – R	Thermal resist. – R
Capacitance – C	Capacitor – C	Spring – 1/k	Fluid capac. – C	Thermal capac. – C
Inertance – L	Inductor – L	Mass – m	Inertance – m	_
Node law	Kirchoff's	Continuity of space	Mass conservation	Heat conservation
Mesh law	Kirchoff's	Newton's 2 nd	Relative P	Relative T

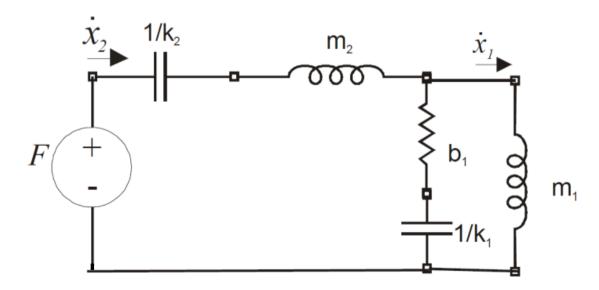
Equivalent circuit for mechanical resonator

$$\omega_0 = \sqrt{\frac{k}{m}}$$

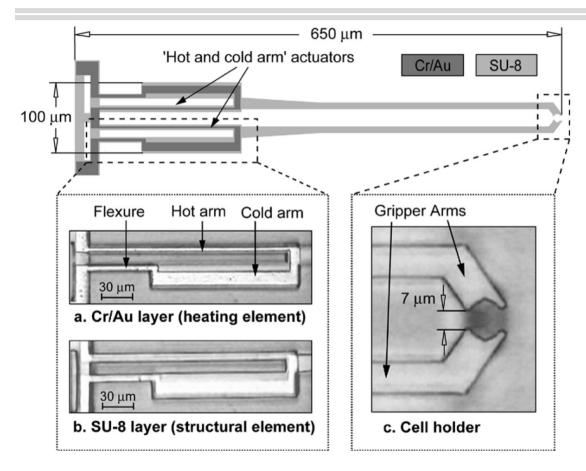

$$Q = \frac{\sqrt{km}}{\Gamma}$$

$$L \leftrightarrow m$$
 $R \leftrightarrow \Gamma$ $C^{-1} \leftrightarrow k$


$$\omega_0 = \sqrt{\frac{1}{LC}}$$


$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

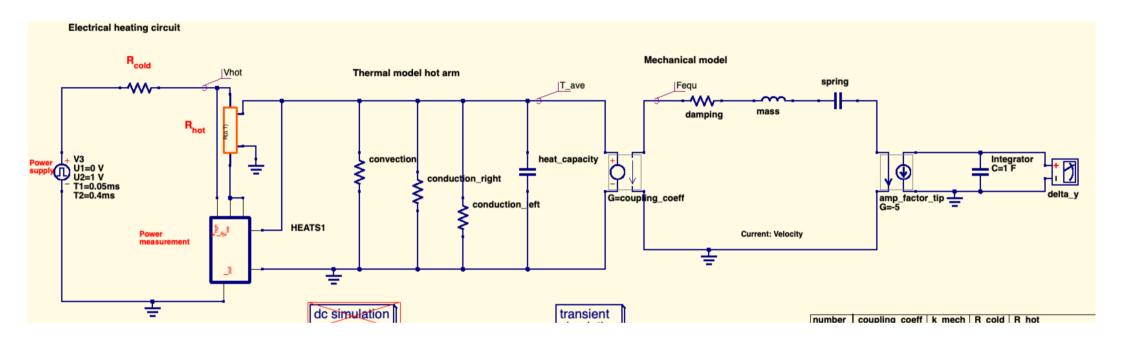
Example of mechanical LEM to electrical LEM



Can do LEM for Thermal, Fluidic, etc

- Usefulness of LEM is
 - Very fast simple model
 - Couple physics and solve all in circuit simulator

Example of Coupled thermal-mechanical LEM



- Thermal model of hot arm (find T_{arm} vs. V_{drive})
- Mechanical model of actuator (find F vs. T_{arm})
- 3. Link them to obtain F vs. V_{drive}

The Output temperature (a voltage in LEM) serves as input drive force (also a voltage in LEM)

Example thermal + mechanical LEMs - > circuit

- Output is: dynamics of gripper closing vs input voltage to heater
- · Can explore parameter space of spring, thermal mass, etc, really fast

- LEM Useful for quickly exploring parameter space and different configurations
- LEM good to combine physics
- Then for detailed dimensioning, use FEM